K+-Selective inward-rectifying channels and apoplastic pH in barley roots
نویسندگان
چکیده
Recent structure-function analysis of heterologously expressed K+-selective inward-rectifying channels (KIRCs) from plants has revealed that external protons can have opposite effects on different members of the same gene family. An important question is how the diverse response of KIRCs to apoplastic pH is reflected at the tissue level. Activation of KIRCs by acid external pH is well documented for guard cells, but no other tissue has yet been studied. In this paper we present, for the first time to our knowledge, in planta characterization of the effects of apoplastic pH on KIRCs in roots. Patch-clamp experiments on protoplasts derived from barley (Hordeum vulgare) roots showed that a decrease in external pH shifted the half-activation potential to more positive voltages and increased the limit conductance. The resulting enhancement of the KIRC current, together with the characteristic voltage dependence, strongly relates the KIRC of barley root cells to AKT1-type as opposed to AKT3-type channels. Measurements of cell wall pH in barley roots with fluorescent dye revealed a bulk apoplastic pH close to the pK values of KIRC activation and significant acidification of the apoplast after the addition of fusicoccin. These results indicate that channel-mediated K+ uptake may be linked to development, growth, and stress responses of root cells via the activity of H+-translocating systems.
منابع مشابه
Apoplastic pH during low-oxygen stress in Barley.
BACKGROUND AND AIMS Anoxia leads to an energy crisis, tolerance of which varies from plant to plant. Although the apoplast represents an important storage and reaction space, and engages in the mediation of membrane transport, this extracellular compartment has not yet been granted a role during oxygen shortage. Here, an attempt is made to highlight the importance of the apoplast during oxygen ...
متن کاملActivation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملInward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control).
K+ is the most abundant cation in cells of higher plants, and it plays vital roles in plant growth and development. Extensive studies on the kinetics of K+ uptake in roots have shown that K+ uptake is mediated by at least two transport mechanisms, one with a high and one with a low affinity for K+. However, the precise molecular mechanisms of K+ uptake from soils into root epidermal cells remai...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملTwo types of single inward rectifying potassium channels in rat myocardial cells.
The patch-clamp method was used to examine inward rectifying potassium channels in the membrane of rat ventricular myocytes. Two types of inward rectifying channels strongly selective for K+ ions and with different conductance and kinetics coexist in rat myocardial cells. When the concentration of K+ was 140 mmol/l on the extracellular side of the patch, the conductance was 38.9 pS for type I c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 120 1 شماره
صفحات -
تاریخ انتشار 1999